Article 6121

Title of the article

Approximate methods for calculating hypersingular integrals 

Authors

Il'ya V. Boykov, Doctor of physical and mathematical sciences, professor, head of the sub-department of higher and applied mathematics, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: boikov@pnzgu.ru
Pavel V. Aykashev, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia), E-mail: math@pnzgu.ru 

Index UDK

517.392 

DOI

10.21685/2072-3040-2021-1-6 

Abstract

Background. Hypersingular integrals are now finding more and more fields of application – aerodynamics, elasticity theory, electrodynamics and geophysics. Moreover, their calculation in an analytical form is possible only in very special cases. Therefore, approximate methods for calculating hypersingular integrals are an urgent problem in computational mathematics. Many works have been devoted to this problem. An even greater number of works are devoted to approximate methods for calculating singular integrals. Studies of approximate methods for calculating singular integrals began much earlier than similar studies of hypersingular integrals. In this direction, results have been obtained that have no analogues for hypersingular integrals. This work is devoted to considerable interest to extend the methods for calculating singular integrals to hypersingular integrals, based on the connection between some classes of singular and hypersingular integrals.
Materials and methods. The construction of quadrature formulas for calculating hypersingular integrals is based on the methods of the constructive theory of functions and the theory of singular and hypersingular integrals.
Results. A method is proposed for constructing quadrature formulas for calculating hypersingular integrals, based on the transformation of quadrature formulas for calculating singular integrals. Quadrature formulas for calculating several classes of hypersingular and polyhypersingular integrals are constructed. The estimates of the error of the constructed quadrature formulas are obtained.
Conclusions. The constructed methods make it possible to efficiently calculate hypersingular integrals when solving applied problems. 

Key words

quadrature formulas, cubature formulas, hypersingular integrals 

 Download PDF
References

1. Ivanov V.V. Teoriya priblizhennykh metodov i ee primenenie k chislennomu resheniyu singulyarnykh integral'nykh uravneniy = The theory of approximate methods and its application to the numerical solution of singular integral equations. Kiev: Naukova dumka, 1968:288. (In Russ.)
2. Boykov I.V. Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Ch. 1. Singulyarnye integraly = Approximate methods for calculating singular and hypersingular integrals. Part 1. Singular integrals. Penza: Izd-vo PGU, 2005:360. (In Russ.)
3. Boykov I.V. Priblizhennye metody vychisleniya singulyarnykh i gipersingulyarnykh integralov. Ch.2. Gipersingulyarnye integraly = Approximate methods for calculating singular and hypersingular integrals. Part 2. Hypersingular integrals. Penza: Izd-vo PGU, 2009:250. (In Russ.)
4. Khubezhty Sh.S. Kvadraturnye formuly dlya singulyarnykh integralov i nekotorye ikh primeneniya = Quadrature formulas for singular integrals and some of their applications. Vladikavkaz: YuMI, 2011. (In Russ.)
5. Lifanov I.K. Metod singulyarnykh integral'nykh uravneniy i chislennyy eksperiment = Singular integral equations method and numerical experiment. Moscow: Yanus, 1995:520. (In Russ.)
6. Vaynikko G.M., Lifanov I.K., Poltavskiy L.N. Chislennye metody v gipersingulyarnykh integral'nykh uravneniyakh i ikh prilozheniya = Numerical methods in hypersingular integral equations and their applications. Moscow: Yanus-K, 2001:508. (In Russ.)
7. Kutt H.R. The numerical evaluation of principal value integrals by finite-part integration. Numerical Mathematics. 1975;24:205–210.
8. Paget D.F. The numerical evaluation of Hadamard finite-part integrals. Numerical Mathematics. 1981;36:447–453.
9. Ioakimidis M.I. A direct method for the construction of Gaussian quadrature rules for Cauchy type and finite-type integrals. Anal. Numer. Theor. Approx. 1983;12:131–140.
10. Bialecki B. A sine quadrature rule for Hadamard finite-part integrals. Numerical Mathematics. 1990;57:263–269.
11. Lutz E., Gray L.J., Ingraffea A.R. An overview of integration methods for hypersingular integrals. Boundary Elements. 1991;13:913–925.
12. Monegato G. On the weights of certain quadratures for the numerical evaluation of Cauchy principal value integrals and their derivatives. Numer. Math. 1987;50:273–281.
13. Monegato G. Numerical evaluation of hypersigular integrals. Journal of Computational and Applied Mathematics. 1994;50:9–31.
14. Monegato G. The numerical evaluation of 2-D Caucty principal value integral arising in boundary integral equation methods. Math. Comp. 1994;64:765–777.
15. Diethelm K. Gaussian quadrature formulae of the third kind for Cauchy principal value integrals: Basic propertics and error estimates. Journal of Computational and Applied Mathematics.1995;65:97–114.
16. Crisculo G. A new algorithm for Cauchy principal value and Hadamard-type finite integrals. Journal of Computational and Applied Mathematics. 1997;78:255–275.
17. Korsunsky A.M. Gauss-Chebyshev quadrature formulae for strongly singular integrals. Quart. Appl. Math. 1998;56:461–472.
18. Boykov I.V. Numerical methods of computation of singular and hypersingular integrals. J. Math. Math. Sci. 2001;28:127–179.
19. Boykov I.V., Boykova A.I., Ventsel E.S. Fundamental solutions for thick sandwich plates. Engineering Analisis and Boundary Elements. 2004;28:1437–1444.
20. Saakyan A.V. Solution of the problem for an edge crack with a hypersingular constitutive equation by the mechanical quadrature method. Izvestiya Natsional'noy Akademii Nauk Armenii. Mekhanika = Proceedings of the National Academy of Sciences of Armenia. 2020;73(2):44–57. (In Russ.)
21. Saakyan A.V. Quadrature formula for a hypersingular integral containing the weight function of Jacobi polynomials with complex exponents. Izvestiya vuzov. Severo-Kavkazskiy region. Estestvennye nauki = University proceedings. North Caucasian region. Natural sciences. 2020;2:94–100. (In Russ.)
22. Hadamard J. Lectures on Cauchy’s Problem in Linear Partial Differential Equations. New Haven: Yale Univ. Press., 1923.
23. Adamar Zh. Zadacha Koshi dlya lineynykh uravneniy s chastnymi proizvodnymi giperbolicheskogo tipa = Cauchy problem for linear partial differential equations of hyperbolic type. Moscow: Nauka, 1978:351. (In Russ.)
24. Chikin L.A. Special cases of the Riemann boundary value problem and singular integral equations. Uchenye zapiski Kazanskogo gosudarstvennogo universiteta = Proceedings of Kazan State University. 1953;113:10:57–105. (In Russ.)
25. Boykov I.V., Dobrynina N.F., Domnin L.N. Priblizhennye metody vychisleniya integralov Adamara i resheniya gipersingulyarnykh integral'nykh uravneniy = Approximate methods for calculating Hadamard integrals and solving hypersingular integral equations. Penza: Izd-vo PenzGTU, 1996:188. (In Russ.)
26. Kolm P., Rokhlin V. Numerical quadratures for singular and hypersingular integrals. Computers and Mathematics with Applications. 2001;41:327–352.
27. Boykov I.V., Ventsel E.S., Boykova A.I. Accuracy optimal methods for evaluating hypersingular integrals. Applied Numerical. 2009;59(6):1366–1385.
28. Kaya A.C., Erdogan E. On the solution of integral equations with strongly singular kernels. Quatery of applied mathematics. 1987;45(1):105–122.
29. Linkov A.M., Mogilevskaya S.G. Finite part integrals in problems of three-dimensional cracks. Prikl. Mat. Mekh. 1986;50:844–850.
30. Hui C.Y., Shia D. Evaluations of hypersingular integrals using Gaussian quadrature. Internat. J. Numer. Methods Engrg. 1999;44:205–214.
31. Du Q.K. Evaluations of certain hypersingular integrals on interval. Internat. J. Numer. Methods Engrg. 2001;51:1195–1210.
32. Choi U.J., Kim S.W., Yun B. Improvement of the asymptotic behaviour of the Euler–Maclaurin formula for Cauchy principal value and Hadamard finite-part integrals. Internat. J. Numer. Methods Engrg. 2004;61:496–513.
33. Boykov I.V., Ventsel E.S., Boykova A.I. An approximate solution of hypersingular integral equations. Anal. Boundary Elements. 2006;30:799–807.
34. Hildenbrand J., Kuhn G. Numerical computation of hypersingular integrals and application to the boundary integral equation for the stress tensor. Anal. Boundary Elements. 1992;10:209–217.
35. Chan Y.S., Fannjiang A., Paulino G.H. Integral equations with hypersingular kernelstheory and applications to fracture mechanics. International Journal of Engineering Science. 2003;41:683–720.
36. Korsunsky A.M. On the use of interpolative quadratures for hypersingular integrals in fracture mechanics. Procceding of the Royal Society. A. Mathematical, physical and engineering sciences. 2002;458:2721–2733.
37. Kazuhiro O., Nao-Aki N. An Iterative Algorithm of Hypersingular Integral Equations for Crack Problems N. Key Engineering Materials. Vols. 2008:793–796.
38. Obaiys S.J., Ibrahim. R.W., Ahmad A.F. Hypersingular Integrals in Integral Equations and Inequalities: FundamentalReview Study. Differential and Integral Inequalities. Moscow: Rassias. Springer, 2019:687–717.
39. Plieva L.Yu. Interpolation-type quadrature formulas for hypersingular integrals on the interval of integration. Sibirskiy zhurnal vychislitel'noy matematiki = Siberian journal of computational mathematics. 2016;19(4):419–428. (In Russ.)
40. Boykov I.V., Zakharova Yu.F., Grinchenkov G.I., Semov M.A. Unsaturated cubature formulas for calculating hypersingular integrals. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Fiziko-matematicheskie nauki = University proceedings. Volga region. Physical and mathematical sciences. 2013;3:5–25. (In Russ.)
41. Boykov I.V., Semov M.A. On the method for calculating hypersingular integrals. Izvestiya vuzov = University proceedings. 2016;3:3–17. (In Russ.)
42. Soliev Yu.S. Approximate calculation of the hypersingular integral along the real axis. Sovremennye problemy teorii funktsiy i ikh prilozheniya: materialy 19-y Mezhdunar. Saratovskoy zimney shkoly, posvyashch. 90-letiyu akad. P. L. Ul'yanova = Modern problems of function theory and their applications: proceedings of the 19th International Saratov winter school dedicated to the 90th anniversary of academician P. L. Ulyanov. Saratov: Nauchnaya kniga, 2018:297–299. (In Russ.)
43. Boykov I.V., Aykashev P.V., Boykova A.I. Approximate methods for solving hypersingular integral equations on the number axis. Zhurnal Srednevolzhskogo matematicheskogo obshchestva = Journal of the Middle Volga Mathematical Society. 2020;22(4):405–423. (In Russ.)
44. Wu J.M., Yu D.H. The approximate computation of hypersingular integrals on interval Chines. J. Numer. Math. Appl. 1999;21:25–33.
45. Zhang D.H., Yu X., Wu J. Superconvergence of the composite Simpson’s rule for a certain finite-part integral and its applications. Journal of Computational and Applied Mathematics. 2009;223(2):598–613.
46. Hu C., He X., Lu T. Euler-Maclaurin expansions and approximations of hypersingular integrals. Discrete Continuous Dynamical Systems. 2015;20(5):1355–1375.
47. Lifanov I.K. Numerical solution of Hilbert's singular integral equations with a strong singularity. Optimal'nye metody vychisleniy i ikh primenenie: mezhvuz. sb. nauch. tr. Vyp. 7 = Optimal computation methods and their application: intercollegiate collected articles. Edition 7. Penza: Penz. politekhn. in-t, 1985:38–45. (In Russ.)
48. Gandel' Yu.V., Eremenko S.V., Polyakova T.S. Matematicheskie voprosy metoda diskretnykh tokov = Mathematical problems of the method of discrete currents. Kharkov: Izd-vo Khar'kov. gos. un-ta, 1992;2:145. (In Russ.)
49. Zigmund A. Trigonometricheskie ryady = Trigonometric series. Moscow: Mir, 1965;1:615. (In Russ.)
50. Gaier D. Konstruktive Methoden der Konformen Abbildung. Berlin: Heidelberd: Springer, 1964:294.

 

Дата создания: 28.04.2021 08:41
Дата обновления: 28.04.2021 09:12